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According to the American Cancer Society, an estimated 234,460 new cases of prostate
cancer (PCa) will occur and that there will be an estimated 27,350 deaths due to prostate cancer in
the US during 2006 (1,2). The report also suggests that African American men are twice as
vulnerable to prostate cancer compared to white men. Although the death rate has dropped over
the last few years it still remains the second leading cause of cancer deaths among men after lung
cancer in the United States. The ACS recommends that the PSA test and the digital rectal
examination should be offered annually, beginning at age 50, to men who have a life expectancy of
at least 10 years and those men that are at higher risk (African American men and those men with a
strong family history of 1 or more first-degree relatives diagnosed with prostate cancer at an early
age). The survival and successful treatment of PCa patients is dependent upon the early diagnosis
of PCa. Further, the ability to monitor the progression and regression of malignancy is critical in
the management of the disease. Currently the combination of digital rectal examination and
prostate-specific antigen (PSA) testing is the primary diagnostic procedure. Typically, an elevated
PSA or a nodule detected on physical examination prompts an evaluation and an eventual
transrectal ultrasound-guided (TRUS) biopsy may reveal cancer. However in most cases, positive
identification of PCa only becomes evident when malignancy has been established and the cancer
has metastasized beyond the capsular region of the prostate. MRI in conjunction with endorectal
coil provides superior visualization of zonal prostate anatomy compared to TRUS (3). MRI by
itself can however be limited as various pathologies can mimic cancer thus compromising the
diagnosis. In recent years, magnetic resonance spectroscopy of the prostate has shown to provide
very useful metabolic information of the prostate. The combined used of MRI and MRSI has
shown to increase the sensitivity and specificity in the detection of prostate cancer (4).

Citrate Metabolism

The metabolism of normal mammalian cells involves the complete oxidation of glucose
and fat through the intermediary steps involving the synthesis and oxidation of citrate via the
Krebs cycle (5). Coupled with phosphorylation, this intermediary synthesis and oxidation of
citrate is essential for the cells to generate their major supply of cellular energy through the
production of ATP. The citrate synthesized during this process in the Krebs cycle forms the source
for acetyl-CoA required for lipogenesis. The Krebs cycle and the recycling of its intermediates are
essential for the various reactions of amino acid metabolism. These established pathways are
essential to normal mammalian aerobic cell metabolism, cellular function, survival, growth, and
reproduction (6). The normal human prostate on the other hand does not go through the process of
citrate oxidation thus accumulating large amounts of citrate which essentially is the end product of
the intermediary metabolism. Cooper and Imfeld were the first to report that citrate levels were
significantly decreased in prostate cancer tissue compared to the normal prostate or BPH (7).
Shortly thereafter the same group suggested that the biochemical alterations seen through altered
citrate metabolism may well occur before any malignant changes are histologically obvious (8).
While these observations were made over four decades ago, it is only in the last decade that



scientists have been paying attention to the measurement of citrate levels within the prostate. The
altered citrate metabolism has now been further studied by Costello, Franklin and their colleagues
who have shed some light on the role of zinc in the production of citrate (9,10).

In addition to citrate, the normal and BPH prostate also accumulates high levels of zinc.
The level of zinc in the normal prostate is about 150ug/g of tissue wet weight. However, the levels
of zinc and citrate are not uniformly distributed throughout the prostate gland. For example in the
normal peripheral zone there is high level of zinc concomitant with high levels of citrate. In the

normal central gland, the levels of zinc
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In prostate cancer however, the ability of intramitochondrial accumulation of zinc

diminishes. It is thought that such a decrease in the zinc level restores the m-aconitase activity that
leads to increased citrate oxidation. This is coupled with ATP production essential for progression
towards malignancy (10,12,13). While many aspects of the zinc-citrate relationship are still under
investigation, there is ample evidence suggesting that zinc-citrate interactions play an important
role in the pathogenesis and progression of prostate malignancy.

Magnetic Resonance Imaging

Recent studies show that the combined use of an endorectal and phased-array coil and a
high field strength MR imaging system provides the highest image resolution possible (3). MR
imaging accurately depicts internal prostatic zonal anatomy and displays the physiologic
complexity of the gland. Over the past several years, the superiority of MRI in the staging
accuracy of cancer involving the peripheral zone has been consistently reported between 75% and
90 (4). Most prostate cancer involves the peripheral zone of the gland, where cancer is identified
as low signal abnormality on T2-weighted imaging. Although MRI has allowed intra-prostatic
evaluation of tumor location, results are often non-specific (14). Torricelli et al showed that cancer



could mimic post-biopsy hemorrhage, scar, prostatitis, or interglandular dysplasia on MR imaging
of the prostate with specificity in the order of 50% (15).

Magnetic Resonance Spectroscopy

MRSI is a powerful tool that can provide useful biological information associated with
many different metabolites (16). Proton ('H) spectroscopy is attractive in terms of sensitivity,
spatial resolution, signal to noise, and acquisition time. It has been widely used in the brain and its
application and availability for imaging various anatomical regions of body has been increasing.
MRS can provide a description of the chemical makeup of an imaged area in order to determine
the presence of cancer (17). Molecules that can be studied with MRS include water, lipids, choline,
citrate, lactate, creatine, and amino acids (16). Based on the initial work by Costello and Franklin
at the University of Maryland, the prostate gland is unique in the body by the fact that it contains
high levels of citrate (18). As the normal glandular epithelial cells are replaced by cancer, the
concentration of citrate and choline change in the transformation to a malignant state. Choline
levels increase and citrate levels decrease in the presence of active cancer (5). As mentioned
above, the reason for the decline in the levels of citrate is the altered intermediate metabolism in
the Krebs cycle (6). Although the mechanism for the elevation of the choline peaks is less
understood, just as in the case of brain spectroscopy, its elevation is thought to be associated with
changes in cell membrane synthesis and degradation that is normally associated with cancer. The
choline resonance observed in-vivo at 3.22 ppm, sometimes referred to as total choline arises from
the methyl hydrogens of trimethylamines and is comprised of choline, phosphocholine (PC),
glycerophosphocholine (GPC), phosphoethanolamine (PE), glycero-phosphoethanolamine (GPE),
and ethanolamine (19-23). These compounds are essential in the synthesis and hydrolysis of
phosphatidylcholine and phosphatidylethanolamines that are an integral part of the characteristic
bilayer structure of cells and regulate membrane integrity and function. Polyamines such as
spermine can be visualized in prostate MRSI (24). Polyamines are involved in many cellular
processes such as maintenance of DNA structure, RNA processing, translation and protein
activation (25,26). Disruption to the synthesis of polyamines is known to modulate the genetic
effects of these genes. Polyamines can be visualized in proton MRSI as a broad peak between
choline and creatine. Normal prostate epithelial cells will demonstrate large amounts of citrate and
polyamines. The malignant cells on the other hand exhibit low levels of citrate and polyamines to
the extent that the choline and creatine resonances are resolved to the baseline. One unfortunate
consequence of prostate MRSI is the inability to monitor metabolites such as lactate and lipids in
vivo due to the necessity for suppressing lipids to minimize contamination from the lipids
surrounding the prostate gland. It has been shown in vitro that the citrate to lactate ratio can be
used to discriminate prostate cancer from BPH and that the ratio can be used as an indicator of
cancer aggressiveness (8). It is hoped that future MRSI improvements will allow for the
interrogation of these metabolites.

MRSI Techniques

Although significant developments have been made with MRSI of the brain, the translation
of this technology to other body parts including the prostate gland has proven to be far from trivial.
In the case of the prostate gland, the deep location of the prostate, the possible movement of the
prostate gland during the MRSI acquisition, and the dominating triglyceride signals from the



surrounding adipose tissues often pose a challenge in obtaining reliable quality spectra. Initial
studies employing prostate spectroscopy used single voxel techniques such as STEAM (Stimulated
Echo Acquisition Method) and PRESS (Point Resolved Spectroscopy) using the body coil (27-30).
Usually the voxel size was large and encompassed both the peripheral zone and the central gland.
Although these techniques showed the feasibility for performing proton spectroscopy, their use in
the clinical setting was limited due to long scan times and the poor signal to noise of the spectra.
However, with the arrival of 2D and 3D MRSI techniques the interest in prostate spectroscopy has
increased (31-34). Several technical hurdles had to be overcome to reliably detect the resonances
from the biological relevant compounds in the prostate including accurate localization and the
suppression of large signals from both water and lipids (35-38).

3D-MRSI technique appears to be the most suitable for the prostate gland as it is able to
provide the prostate metabolite level information with high spatial resolution for the entire gland.
Typically PRESS localization and band selective excitation with gradient dephasing (BASING) for
water and lipid suppression is used (35). 3D-MRSI provides an array of spectra from contiguous
voxels from the entire prostate gland. The contiguous array of spectra that map the entire prostate
are in alignment with the anatomical T1- and T2-weighted images allowing for a comparative
interpretation between the anatomical images and the metabolic information. Investigators at the
University of California San Francisco (UCSF) showed that 3D-MRSI can be used to differentiate
and localize the tumor foci to a volume as small as 0.24cc (39-43). Similar results have been
reported by the group in the University of Nijmegen, Netherlands who further refined the 3D-
MRSI technique by using elliptical encoding to further reduce the scan time (44-46).

Interpretation resulting from a combined evaluation of the MR images and by metabolic
changes observed through MRSI leads to the most confident identification of cancer with a
specificity of up to 98% (42). Decreased signal intensity on T2-weighted images in conjunction
with decreasing levels of citrate and polyamines and a concomitant increase in the levels of choline
increases the specificity in the diagnosis of prostate cancer. Hence an increased choline to citrate
ratio is usually used as a method for depicting prostate cancer. Since the choline and creatine
resonances are inseparable for quantification purposes, most investigators use
[Choline+Creatine]/Citrate (CC/C) for spectral analysis. A standardized scoring method was
developed by Jung et al which is based on the deviation of the CC/C ratio from its normal value of
0.2240.013. A voxel CC/C value within one standard deviation of this normal value was given a
score of 1, a value between 1 and 2 standard deviations was given a score of 2, a value between 2
and 3 standard deviations was given a score of 3, a value between 3 and 4 standard deviations was
given a score of 4, and a value greater than 4 standard deviations was assigned a score of 5.
Additional adjustments were made to the score to account for the elevation of choline over
creatine, reduced polyamines, and poor signal to noise rations. In these way each voxel obtained a
score between 1 and 5 which was designated to an interpretative scale of likely benign, probably
benign, equivocal, probably malignant and likely malignant corresponding to a voxel score from 1-
5 respectively. Using this standardized five-point scale they were able to show good accuracy and
excellent interobserver agreement. It should be noted that 3D-MRSI produces vast amounts of
spectroscopic data and a standardized scale such as the one developed by Jung et al is likely to
make the task of spectral interpretation less formidable (47). Such standardized scales will allow
one to easily characterize the tumors aggressiveness and spatial extent.



The combination of MRI and MRSI in conjunction with the endorectal and phased-array

body coil is emerging as the most sensitive tool for anatomic and metabolic evaluation of the
prostate gland (4,48,49). Improvements in pulse sequences and MR technology have enabled the
acquisition of the metabolic information from the entire prostate at high resolution within a
reasonable time of ten minutes or less. Proton MRI/MRSI may be of great value for patients who
are at increased risk for prostate cancer, for patients who have chosen watchful waiting, for
longitudinal follow up from therapy, and in guiding various localized therapeutic treatments (50-
52). MRI/MRSI of the prostate gland is likely to benefit from the recent trend towards ultra-high
field magnet systems and emergence of multi-channel parallel imaging (53-55). Further newer
techniques such as diffusion and perfusion are likely to increase the sensitivity and specificity of
prostate cancer detection and characterization (56-64).
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